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Abstract
We assessed total mercury (THg) concentrations in breast feathers of diurnal North American raptors collected at migration
monitoring stations. For 9 species in the Pacific Flyway, we found species and age influenced feather THg concentrations
whereas sex did not. Feather THg concentrations µg/g dry weight (dw) averaged (least squares mean ± standard error) higher
for raptors that generally consume > 75% avian prey (sharp-shinned hawk Accipiter striatus: n= 113; 4.35 ± 0.45 µg/g dw,
peregrine falcon Falco peregrinus: n= 12; 3.93 ± 1.11 µg/g dw, Cooper’s hawk Accipiter cooperii: n= 20; 2.35 ± 0.50 µg/g
dw, and merlin Falco columbarius: n= 59; 1.75 ± 0.28 µg/g dw) than for raptors that generally consume < 75% avian prey
(northern harrier Circus hudsonius: n= 112; 0.75 ± 0.10 µg/g dw, red-tailed hawk Buteo jamaicensis: n= 109; 0.56 ±
0.06 µg/g dw, American kestrel Falco sparverius: n= 16; 0.57 ± 0.14 µg/g dw, prairie falcon Falco mexicanus: n= 10;
0.41 ± 0.13 µg/g dw) except for red-shouldered hawks Buteo lineatus: n= 10; 1.94 ± 0.61 µg/g dw. Feather THg
concentrations spanning 13-years (2002–2014) in the Pacific Flyway differed among 3 species, where THg increased for
juvenile northern harrier, decreased for adult red-tailed hawk, and showed no trend for adult sharp-shinned hawk. Mean
feather THg concentrations in juvenile merlin were greater in the Mississippi Flyway (n= 56; 2.14 ± 0.18 µg/g dw) than
those in the Pacific Flyway (n= 49; 1.15 ± 0.11 µg/g dw) and Intermountain Flyway (n= 23; 1.14 ± 0.16 µg/g dw), and
Atlantic Flyway (n= 38; 1.75 ± 0.19 µg/g dw) averaged greater than the Pacific Flyway. Our results indicate that raptor
migration monitoring stations provide a cost-effective sampling opportunity for biomonitoring environmental contaminants
within and between distinct migration corridors and across time.
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Introduction

Mercury (Hg) contamination in the environment is ubiqui-
tous across the globe, present in remote ecosystems, and
anthropogenic activities have contributed to its release
(Fitzgerald et al. 1998; Obrist et al. 2018). Once in the
environment, Hg can be transformed to methylmercury
(MeHg), which is the form most biologically available and

biomagnified in food webs (Wiener et al. 2003), where even
low levels of exposure in wildlife has been shown to affect
immune system function, behavior, reproductive success,
survival, cellular function, and is attributed to other
abnormalities, especially during development (Wolfe et al.
1998; Ackerman et al. 2016a; Albers et al. 2007; Heinz
et al. 2009). While the methylation processes of Hg are
typically confined to aquatic ecosystems, MeHg can be
transferred via trophic interactions into terrestrial ecosys-
tems potentially leading to biomagnification in terrestrial
food webs (Cristol et al. 2008; Rimmer et al. 2010; Becker
et al. 2018).

Biomonitoring of sentinel wildlife species, such as apex
predators, can assess biomagnified levels of MeHg in var-
ious food webs across space and time. Diurnal birds of prey
(raptors; e.g., hawks/eagles (Accipitridae) and falcons
(Falconidae), can be useful in this assessment because they
occupy a variety of terrestrial habitats and feed at the top of
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various food webs around the world; their use as biosenti-
nels for contamination is already common in Europe and
Asia (Espín et al. 2016; Gómez-Ramírez et al. 2014; García-
Seoane et al. 2017; Walker et al. 2008; Movalli 2000;
Zolfaghari et al. 2007). In North America, MeHg exposure
in terrestrial feeding raptors has received relatively little
attention; previous studies highlight raptors that have a
direct link to aquatic ecosystems, such as piscivores (e.g.,
bald eagles Haliaeetus leucocephalus and osprey Pandion
haliaetus; Bowerman et al. 1994; DesGranges et al. 1998;
Weech et al. 2006; Henny et al. 2010; Guigueno et al. 2012;
DeSorbo et al. 2018), despite MeHg being prevalent in
terrestrial food webs (Cristol et al. 2008).

Feather Hg concentrations represents dietary MeHg in
the blood at the time of feather growth (Furness et al. 1986;
Lodenius and Solonen 2013). Blood Hg concentrations
during feather growth are influenced by both the recent
dietary intake of MeHg and the redistribution of MeHg
among tissues (Furness et al. 1986). While feathers provide
a simple and less invasive sampling opportunity, it is
important to emphasize that feather Hg concentration can
vary widely within and among individual feathers and
feather types (Cristol et al. 2012; Lodenius and Solonen
2013), warranting careful consideration when interpreting
feather Hg concentrations. Sampling tissues such as blood
or eggs can provide a more informative measure of local Hg
exposure in birds, as Hg concentrations can more readily be
translated into common toxicity benchmarks and represent
more current Hg concentrations and risk (Ackerman et al.
2016a). However, collecting blood or egg samples is not
always feasible, especially for rare or protected species
(Ackerman et al. 2012), and sampling feathers from raptors
for contaminant monitoring at multiple sites is more com-
mon and can more easily be adapted to collaborative
research over large geographic regions (Smith et al. 2003).

When looking for large or coarse scale trends of Hg
exposure, feathers offer an opportunity for broad inter-
specific comparisons, in addition to temporal and spatial
contaminant studies (Keyel 2016; Bond et al. 2015; García-
Seoane et al. 2017). Breast feathers are relatively easy to
obtain from living birds and sampling of feathers is mini-
mally invasive because collection does not impair flight
(Furness et al. 1986; Dauwe et al. 2003; Espín et al. 2016,
2014). While use of blood samples for Hg exposure studies
can be advantageous because of less intra-individual var-
iation among repeated samples, sampling feathers at
migration concentration points provides an opportunity to
remotely monitor the Hg exposure raptors are experiencing
on breeding grounds because juvenile feathers were grown
during chick development at nest sites and adult feathers are
similarly grown during the breeding season (see Bildstein
and Meyer 2000, Smallwood and Bird 2002, Curtis et al.
2006, Preston and Beane 2009). The specific ecosystems

represented by these feather samples vary by species due to
species-specific habitat preferences. For example, sharp-
shinned hawk Accipiter striatus feathers will be broadly
representative of the boreal and montane forests that this
species occupies during the breeding season (Bildstein and
Meyer 2000), while American kestrel Falco sparverius
feathers reflect Hg exposure in their grassland and savannah
breeding habitats (Smallwood and Bird 2002).

In this study, we used archived breast feathers to 1)
quantify feather THg concentrations in diurnal raptor spe-
cies in the Pacific Flyway and look at comparisons among
9 species, 2) assess temporal trends of Hg exposure span-
ning a 13-year period (2002–2014) in the Pacific Flyway for
three raptor species, juvenile northern harrier Circus hud-
sonius, adult sharp-shinned hawk, and adult red-tailed hawk
Buteo jamaicensis, and 3) investigate spatial patterns of Hg
exposure among four distinct North American flyways
(Pacific, Intermountain, Mississippi, and Atlantic) for a
single raptor species, merlin Falco columbarius.

Methods

Sample collection and study design

We compiled archived breast feathers (plucked from
approximately 2 cm below crop) collected from raptors
banded during autumn migration, as collecting and archiv-
ing breast feathers is accepted as part of standard procedure
during the banding process (Smith et al. 2003). Feathers
were collected from individuals appearing to be healthy
during the banding process. Based on the results of long-
term band recovery data from North American raptor
banding stations (Goodrich and Smith 2008, Hull et al.
2009, GGRO 2015), throughout this study we use migration
monitoring stations located along known concentration
points as representative of North American migration fly-
ways (Pacific, Intermountain, Mississippi, and Atlantic).

To investigate differences in Hg exposure among raptor
species in the Pacific Flyway, we analyzed archived feathers
from 10 diurnal raptor species banded by the Golden Gate
Raptor Observatory in the Marin Headlands of California.
To reduce effect of interannual variation in Hg exposure, we
primarily collected samples from within a single year
(2006), however, we also included feathers from rarely
sampled species or age classes from other years due to low
sample sizes in any one specific year within the time frame
of 2002–2014 (Tables 1 and 2). We classified age as either
juvenile (hatch-year; <1 yr. old; have not undergone feather
molt) or adult (after-hatch-year; >1 yr. old; have undergone
feather molt). We categorized a species as a bird specialist if
their diet typically consisted of over 75% avian prey (i.e.,
sharp-shinned hawk, Cooper’s hawk Accipiter cooperii,
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merlin, and peregrine falcon Falco peregrinus) or as a non-
bird specialist if their diet typically consisted of less than
75% avian prey (i.e., northern harrier, red-shouldered hawk
Buteo lineatus, broad-winged hawk Buteo platypterus, red-
tailed hawk, American kestrel, and prairie falcon Falco
mexicanus) based on published species accounts and field
guides (Bildstein and Meyer 2000; Curtis et al. 2006;
Warkentin et al. 2005; White et al. 2002; Smith et al. 2011;
Dykstra et al. 2008; Goodrich et al. 2014; Preston and
Beane 2009; Smallwood and Bird 2002; Steenhof 2013;
Peeters and Peeters 2005). We determined sex of each
sexually dimorphic raptor based on measurements of
informative morphological characters, such as wing chord,
tarsus depth, and hallux (Pitzer et al. 2008; GGRO 1998).

To investigate temporal trends in Hg exposure within the
Pacific Flyway, we collected archived feathers of juvenile
northern harrier, adult sharp-shinned hawk, and adult red-
tailed hawk that spanned a 13-year period (2002–2014) and
were sampled as migrants in the Marin Headlands, Cali-
fornia. For adult red-tailed hawks only, we included addi-
tional samples in all years collected in the northern Central
Valley of California (n= 58; Yolo County, Solano County,
Butte County, Colusa County) from November through
February months, which based on population genetics and
band recoveries are understood to be part of the same dis-
tinct population that use the Pacific Flyway as a migration
corridor and are sampled in the Marin Headlands (Hull et al.
2009; Goodrich and Smith 2008).

To investigate geographic Hg exposure trends among
four distinct raptor migration flyways in North America, we
collected feathers from juvenile merlins in the Pacific,
Intermountain (a defined migration corridor within the
western Central Flyway; Goodrich and Smith 2008), Mis-
sissippi, and Atlantic flyways during fall migration of 2009.
All Pacific Flyway samples were collected in the Marin
Headlands, California, all Mississippi Flyway samples were
collected in Duluth, Minnesota, and all Atlantic Flyway
samples were collected in Cape May, New Jersey. Multiple
banding stations contributed feather samples from the
Intermountain Flyway (Chelan Ridge, Washington; Bonney
Butte, Oregon; Boise, Idaho; Goshutes Mountains, Nevada;
Commissary Ridge, Wyoming; Manzanos Mountains, New
Mexico). Importantly, all feathers collected from juvenile
merlins during migration represent breast feathers grown on
the breeding grounds in the Boreal and Pacific Northwest
region of North America (Warkentin et al. 2005). Feather
samples from adult individuals were only available from the
Intermountain and Mississippi flyways.

Sample processing and mercury determination

We conducted total Hg (THg) analysis at the U.S. Geolo-
gical Survey, Dixon Field Station Environmental MercuryTa

bl
e
2
T
ot
al

m
er
cu
ry

(T
H
g)

co
nc
en
tr
at
io
ns

(µ
g/
g
dw

)
in

ra
pt
or

br
ea
st
fe
at
he
rs

sa
m
pl
ed

in
th
e
P
ac
ifi
c
F
ly
w
ay

(A
)
A
du
lt
fe
m
al
e

(B
)
A
du
lt
m
al
e

(C
)
Ju
ve
ni
le

fe
m
al
e

(D
)
Ju
ve
ni
le

m
al
e

µg
/g

dw
T
H
g

µg
/g

dw
T
H
g

µg
/g

dw
T
H
g

µg
/g

dw
T
H
g

F
am

ily
C
om

m
on

na
m
e

n
S
am

pl
e
ye
ar
(s
)

M
ea
n
±
S
E

n
S
am

pl
e
ye
ar
(s
)

M
ea
n
±
S
E

n
S
am

pl
e
ye
ar
s(
s)

M
ea
n
±
S
E

n
S
am

pl
e
ye
ar
s(
s)

M
ea
n
±
S
E

A
cc
ip
itr
id
ae N
or
th
er
n
H
ar
ri
er

4
20
06
,
20
12
-1
3

0.
87

±
0.
42

5
20
06
,
20
12

1.
08

±
0.
47

59
20
02
-0
9,

20
12
-1
4

0.
43

±
0.
04

44
20
02
,
20
04
-1
4

0.
54

±
0.
06

S
ha
rp
-s
hi
nn
ed

H
aw

ka
96

20
02
-2
01
4

6.
14

±
0.
39

6
20
06
-0
7,

20
09

5.
05

±
1.
27

6
20
06
,
20
09

1.
96

±
0.
75

5
20
06

0.
78

±
0.
32

C
oo
pe
r’
s
H
aw

ka
5

20
06

2.
62

±
1.
24

5
20
06

3.
51

±
1.
65

5
20
06

1.
40

±
0.
36

5
20
06

1.
78

±
0.
45

R
ed
-s
ho
ul
de
re
d
H
aw

k
–

–
–

–
–

–
5

20
06

2.
00

±
1.
03

5
20
06

0.
77

±
0.
39

R
ed
-t
ai
le
d
H
aw

k
93

20
02
-2
01
4

0.
67

±
0.
09

5
20
06

1.
39

±
0.
79

6
20
06
,
20
07

0.
28

±
0.
10

5
20
06

0.
94

±
0.
36

F
al
co
ni
da
e M

er
lin

a
–

–
–

–
–

–
22

20
06
,
20
09

1.
32

±
0.
22

37
20
06
,
20
09

1.
04

±
0.
13

A
m
er
ic
an

K
es
tr
el

3
20
06

0.
43

±
0.
12

3
20
06

0.
44

±
0.
12

5
20
06

0.
48

±
0.
20

5
20
06

0.
54

±
0.
23

P
ra
ir
ie

F
al
co
n

–
–

–
–

–
–

5
20
07
,
20
11
-1
3

0.
12

±
0.
06

5
20
02
,
20
06
,
20
10
-1
1

0.
60

±
0.
32

P
er
eg
ri
ne

F
al
co
na

2
20
03
,
20
08

3.
86

–
–

–
5

20
06
,
20
07

2.
09

±
1.
03

5
20
06
-0
7,

20
09

–
10

3.
34

±
1.
65

T
hi
s
da
ta
is
or
ga
ni
ze
d
by

ag
e
(a
du

lt
or

ju
ve
ni
le
)
an
d
se
x
(f
em

al
e
or

m
al
e)

an
d
re
pr
es
en
ts
sa
m
pl
e
si
ze

(n
),
ye
ar
(s
)
fe
at
he
rs
w
er
e
sa
m
pl
ed
,a
nd

ge
om

et
ri
c
m
ea
n
±
st
an
da
rd

er
ro
r
(M

ea
n
±
S
E
).
F
ea
th
er

T
H
g
w
as

ca
lc
ul
at
ed

fo
r
(A

)
ad
ul
t
fe
m
al
es

of
si
x
sp
ec
ie
s,
(B
)
ad
ul
t
m
al
es

of
fi
ve

sp
ec
ie
s,
(C
)
ju
ve
ni
le

fe
m
al
es

of
ni
ne

sp
ec
ie
s,
an
d
(D

)
ju
ve
ni
le

m
al
es

of
ni
ne

sp
ec
ie
s.
B
ro
ad
-w

in
ge
d
ha
w
ks

ar
e

ex
cl
ud

ed
fr
om

ta
bl
e
du

e
to

un
kn

ow
n
se
x

a
B
ir
d-
sp
ec
ia
lis
ts
w
ith

di
et
s
th
at

ty
pi
ca
lly

co
ns
is
t
of

>
75

%
av
ia
n
pr
ey

R. P. Bourbour et al.



Laboratory. We washed all feathers individually in 1%
Alconox® solution (Alconox, Inc.) and manually scrubbed
each feather to remove any surface debris from the physical
environment followed by rinsing with deionized water
(Herring et al. 2017). We dried each feather at approxi-
mately 50 °C for 24–48 h and stored them in desiccators
prior to THg analysis. We used THg concentration as an
index of MeHg because Hg in feathers is almost entirely
MeHg (Ackerman et al. 2016a). We determined THg con-
centrations on the Nippon MA-3000 Direct Mercury Ana-
lyzer (Nippon Instruments, College Station, Texas)
following Environmental Protection Agency Method 7473
(U.S. EPA). We analyzed one feather per individual for all
species to determine the THg concentration. The exception
was American kestrels, for which we analyzed two feathers
per bird due to the smaller feather size.

Quality assurance measures included analysis of a cer-
tified reference material (CRM; either dogfish muscle tissue
[DORM] or lobster hepatopancreas [TORT] certified by the
National Research Council of Canada, Ottawa, Canada),
system blank, method blank, continuing calibration ver-
ification (CCV), duplicate, and a spiked duplicate with each
batch.

Percent recoveries (mean ± SD) for CRM and CCV was
101.5 ± 1.5% (n= 73) and 102.0 ± 1.6% (n= 62), respec-
tively. The mean absolute relative percent difference for
feather duplicates was 15.0 ± 26.3% (n= 65), and these did
not represent true method duplicates but rather should be
interpreted as differences between individual feathers
because single feathers were analyzed for each duplicate.
The mean absolute relative percent difference for matrix
spike duplicates was 0.7 ± 0.3% (n= 9).

Statistical analyses

We took the natural-log of feather THg concentrations (µg/g
of dry wt.) to normalize data before analyses. We used R
Studio V0.99.484 (R Studio Team 2015) for all statistical
analyses. We conducted three separate analyses for THg
concentrations determined in raptor feathers: 1) Multi-
species comparisons within the Pacific Flyway, 2) Temporal
trends over a 13-year period (2002–2014) for three species
in the Pacific Flyway, and 3) Geographic trends for a single
species (merlin) sampled in four North American flyways.
We calculated all model estimates, Tukey pair-wise post-
hoc tests, back-transformed data (delta method; Seber
1982), and fractional degrees of freedom (Satterthwaite
method) using R Package ‘lsmeans’ (Lenth 2016). We
calculated conditional R2 (R2

c) for describing the variance
explained by factors for each model.

First, to test for differences among species, we used
ANOVA for a linear mixed effects model that included
species (9 species), age (juvenile or adult), and sex (male or
female) as fixed effects and year as a random effect. Feather
THg concentrations for broad-winged hawk were excluded
from statistical analyses due to unknown sex, but we cal-
culated geometric mean [95% CI] µg/g dry weight (dw) for
reference. We used 95% CI Tukey pair-wise comparisons
averaged over age and sex for post-hoc analyses. Interac-
tions between species and age and between species and sex
were not included in our ANOVA model due to rank
deficiencies caused by uneven sample sizes in the archived
feathers available.

Second, for temporal analyses (2002–2014) of juvenile
northern harrier, adult sharp-shinned hawk, and adult red-
tailed hawk we used ANOVA for linear models. For
northern harrier and sharp-shinned hawk, we included year
(continuous), passage date through migration monitoring
site (continuous), and sex (male of female) as fixed effects.
For red-tailed hawk, we included year (continuous), passage
date through migration monitoring site (Marin Headlands)
or sample collection date (Central Valley; continuous), sex
(male or female), site (Marin Headlands or Central Valley),
and an interaction between passage/sample collection date,
and site as fixed effects. If site was a significant factor for
feather THg concentrations in red-tailed hawks, we ran a
separate analysis with only individuals sampled at the
migration banding station in the Marin Headlands, CA to
account for site, since sample collection date for red-tailed
hawks in the Central Valley ranged from November to
February and those sampled in the Marin Headlands ranged
from August to early January. For raptors sampled in the
Marin Headlands, passage date represents the date when
feather samples were collected from an individual migrating
through the migration monitoring site, and any effect from
passage date may indicate differential Hg exposure among
geographically or genetically distinct raptor populations
(Goodrich and Smith 2008; Hull et al. 2009). For temporal
figure and red-tailed hawk passage date figure, back-trans-
formations, partial residuals, and confidence bands were
calculated and displayed using R Package ‘visreg’ (Breheny
and Burchett 2017).

Third, for the geographic analysis of juvenile merlin
among the four North American flyways, we used ANOVA
for linear mixed effects models using flyway and sex as
fixed effects and site as random effect due to having mul-
tiple sampling sites within the Intermountain Flyway. As
described above, migration monitoring sites have been
previously documented to be representative of the broader
migration flyway within which they are located (Goodrich
and Smith 2008). We used 95% CI Tukey pair-wise
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comparisons averaged over sex for post-hoc analyses.
Adults sampled in Intermountain and Mississippi flyways
were analyzed using ANOVA separately.

Results

Multispecies results

We tested for differences of feather THg concentrations
among 9 raptor species (Fig. 1; Tables 1 and 2) and found
that species and age were significant predictors of THg,
whereas sex was not (Species: F8, 450= 45.48, p < 0.001;
Age: F1, 450= 25.83, p < 0.001; Sex: F1, 450= 1.36, p= 0.24;
R2
c = 0.53). Tukey pair-wise comparisons (95% CI) revealed

that sharp-shinned hawk averaged significantly higher (p <
0.001) THg concentrations than all non-bird specialists
except for red-shouldered hawk, and one bird specialist,
merlin (Fig. 1). Peregrine falcons, Cooper’s hawks, and
merlins averaged significantly higher (p < 0.05) THg con-
centrations than all non-bird specialists except for red-
shouldered hawk (Fig. 1). Red-shouldered hawks averaged
significantly higher (p < 0.05) THg concentrations than red-
tailed hawks, American kestrels, and prairie falcons (Fig. 1).

Temporal results

We tested for temporal trends of Hg exposure in juvenile
northern harrier, adult sharp-shinned hawk, and adult red-

tailed hawk sampled in the Pacific Flyway over a 13-year
period (Fig. 2; Table 3). For juvenile northern harrier, we
found that year was a significant predictor of THg, whereas
passage date and sex were not (Year: F1, 99= 9.73, p=
0.0024; Passage Date: F1, 99= 0.68, p= 0.41; Sex: F1, 99=
1.15, p= 0.29; R2

c = 0.10). For adult sharp-shinned hawk,
we found no influence of year, passage date, or sex (Year:
F1, 98= 0.23, p= 0.63; Passage Date: F1, 98= 0.18, p=
0.67; Sex: F1, 98= 0.55, p= 0.46; R2

c = 0.010). For adult
red-tailed hawk, we found that year and site were significant
predictors of THg, whereas passage/sample collection date,
sex, and the interaction between passage date and site were
not (Year: F1, 92= 4.26, p= 0.042; Passage/Sample Date:
F1, 92= 0.73, p= 0.39; Sex: F1, 92= 0.92, p= 0.34; Site: F1,
92= 10.99, p= 0.0013; Passage/Sample Date*Site: F1, 92=
2.52, p= 0.12; R2

c = 0.17). Because site was a significant
predictor of feather THg concentrations in adult red-tailed
hawk, we reran the statistics just for a single site at the
Marin Headlands and found that passage date (Fig. 3) was a
significant predictor of THg, whereas year and sex were not
(Year: F1, 36= 2.10, p= 0.16; Passage Date: F1, 36= 4.14,
p= 0.049; Sex: F1, 36= 0.001, p= 0.97; R2

c = 0.14).

Geographic results

We tested for geographical trends of THg exposure using a
single species (merlin) sampled in four North American
flyways where age (juvenile) and year (2009) were fixed by
the experimental design. For juvenile merlin, flyway was a

Fig. 1 Least squares (LS) mean ± standard error µg/g dw of breast
feather THg concentrations in 9 North American raptor species sam-
pled in the Pacific Flyway. THg concentrations are averaged over age
and sex and estimated from a linear mixed-effects model with species,
age, and sex as fixed effects, and year as a random effect. Species that
do not share a lower-case letter are significantly different (p < 0.05)

from each other with a 95% Tukey pair-wise comparison. Raptors
were considered bird specialists if their diet typically consists of >75%
avian prey, and non-bird specialist if diet typically consists of <75%
avian prey. † Broad-winged hawks (juvenile) were excluded from
statistical analyses due to unknown sex, however, reported is geo-
metric mean [95% CI]: n= 10; 0.31[0.24–0.41] µg/g dw
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significant predictor of THg, whereas sex was not (Flyway:
F3, 161= 11.09, p < 0.001; Sex: F1, 161= 2.57, p= 0.11; R2

c

= 0.18). Tukey pair-wise comparisons (95% CI) revealed
that merlins sampled in the Mississippi Flyway averaged
higher (p < 0.001) feather THg concentrations than merlins
sampled in both the Pacific Flyway and Intermountain
Flyway. Merlins sampled in the Atlantic Flyway averaged
higher (p < 0.05) feather THg concentrations than merlins
sampled in the Pacific Flyway (Fig. 4; Table 4). Adults

exhibited higher feather THg concentrations than juvenile
individuals within the Intermountain Flyway (F1, 27= 22.8,
p < 0.001, R2

c = 0.45) and Mississippi Flyway (F1, 60= 28.6,
p < 0.001, R2

c = 0.33). Adult merlin feather samples were
only available from two flyways (Table 5), and as such were
omitted from the full analysis, however, THg concentrations
were as follows: geometric mean[95%CI]: Intermountain
Flyway, n= 7; 3.09[1.95–4.90]; Mississippi Flyway, n= 7;
8.09[5.55–11.79].

Fig. 2 Model predictions showing back log-transformed breast feather
THg concentrations (µg/g dw) with partial residuals and confidence
bands over a 13-year period (2002–2014) for three species in the
Pacific Flyway. a Juvenile northern harriers showed an increase in

mean THg concentrations over the sampling period. b Adult sharp-
shinned hawks showed no significant trend. c Adult red-tailed hawks
showed a decrease in mean THg concentrations over the sampling
period

Table 3 Total mercury (THg)
concentrations (µg/g dw) in
breast feathers collected from
three raptor species in the Pacific
Flyway over a 13-year period
(2002–2014)

Northern Harrier (juvenile) Sharp-shinned Hawk (adult) Red-tailed Hawk (adult)

Year µg/g dw THg µg/g dw THg µg/g dw THg

n (female,male) Mean ± SE n (female,male) Mean ± SE n (female,male) Mean ± SE

2002 11 (8,3) 0.41 ± 0.10 6 (6,0) 6.83 ± 1.94 7 (7,0) 1.14 ± 0.61

2003 2 (2,0) 0.15 ± 0.08 8 (8,0) 5.05 ± 1.29 2 (2,0) 0.49 ± 0.44

2004 11 (7,4) 0.34 ± 0.08 6 (6,0) 5.31 ± 1.51 10 (10,0) 1.50 ± 0.73

2005 – – 11 (11,0) 7.64 ± 1.75 4 (4,0) 0.78 ± 0.51

2006 17 (11,6) 0.57 ± 0.11 11 (7,4) 5.23 ± 0.97 18 (13,5) 1.06 ± 0.32

2007 13 (6,7) 0.37 ± 0.08 13 (12,1) 7.67 ± 1.56 10 (10,0) 0.65 ± 0.31

2008 5 (2,3) 0.42 ± 0.14 12 (12,0) 4.45 ± 0.99 10 (10,0) 1.02 ± 0.50

2009 8 (2,3) 0.34 ± 0.09 12 (11,1) 4.35 ± 0.91 4 (4,0) 0.53 ± 0.36

2010 1 (0,1) 0.48 7 (7,0) 6.16 ± 1.65 3 (3,0) 0.77 ± 0.58

2011 2 (0,2) 0.55 ± 0.30 11 (11,0) 5.41 ± 1.24 5 (5,0) 0.68 ± 0.42

2012 11 (4,7) 0.63 ± 0.15 1 (1,0) 11.86 10 (10,0) 1.26 ± 0.64

2013 7 (4,3) 0.71 ± 0.21 3 (3,0) 5.13 ± 1.94 11 (11,0) 0.28 ± 0.14

2014 15 (8,7) 0.69 ± 0.13 1 (1,0) 11.79 4 (4,0) 0.14 ± 0.09

Data represents sample sizes (n) of juvenile northern harrier, adult sharp-shinned hawk, and adult red-tailed
hawk over a 13-year period (2002–2014). For each sampling year, geometric means ± standard errors (Mean
± SE) µg/g dw of feather THg were calculated
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Discussion

Species, age, and flyway were significant predictors of
feather THg concentrations in terrestrial-feeding raptors in
western North America. All raptors sampled had measur-
able levels of THg in their breast feathers, consistent with
the ubiquitous nature of Hg contamination; however,

notably demonstrating exposure within the terrestrial food
web outside of aquatic ecosystems most commonly asso-
ciated with MeHg bioaccumulation (Howie et al. 2018).
Feather THg concentration levels were highly variable
among species and even among individuals within a spe-
cies. Hg toxicity may have different effects and con-
sequences that vary among species (Scheuhammer et al.
2007) and feather Hg concentrations in raptors are not
necessarily indicative of reproductive success or population
declines (Bowerman et al. 1994; Bechard et al. 2009;
Barnes et al. 2018). Therefore, the true impacts on each
raptor species in this study are difficult to extrapolate from
the feather THg concentrations reported, and instead may
serve as a guide for future targeted research investigating
contaminants levels and impacts on specific raptor
populations.

Diet is the main route of MeHg exposure in vertebrates
and the THg present in feathers is almost exclusively from
MeHg in the blood stream at the time of feather growth.
Therefore, we expected variability in feather THg con-
centrations among species and individuals due to differ-
ences in foraging ecology, dietary preferences, and
variations in local prey composition, in addition to the
variability of Hg deposited among feathers and feather
tracts (Lindberg 1984; Dauwe et al. 2003; Palma et al. 2005;
Roque et al. 2016). Furthermore, the feather THg con-
centrations in this study represent exposure on the breeding
grounds where feathers were grown rather than exact
location of exposure.

We found that species that presumably feed at higher
trophic levels (i.e., bird specialists that consume insecti-
vorous songbirds) had higher feather THg concentrations
compared to raptors that typically consume granivorous
mammals, similar to other raptor studies showing elevated
Hg levels in higher trophic positions (Zolfaghari et al. 2007;
Lourenço et al. 2011; Keyel 2016). Sharp-shinned hawks
had the highest mean feather THg concentrations and are a
bird specialist that consumes almost exclusively songbird
prey (Bildstein and Meyer 2000). Increased MeHg exposure
may arise through the consumption of songbirds and
shorebirds that consume invertebrates with aquatic larval
stages (Rimmer et al. 2010; Cristol et al. 2008). Further-
more, predatory invertebrates (e.g., spiders, dragonflies) are
a common prey of songbirds that bird-eating raptors typi-
cally consume, which ultimately increases trophic level and
the degree of biomagnification in raptors that consume
insectivorous songbirds (Gunnarsson 2007; Cristol et al.
2008; Townsend et al. 2013). While bird-eating raptors
consume a variety of insectivorous and granivorous song-
bird prey, most granivorous songbirds, e.g., sparrows
(Emberizidae), blackbirds (Icteridae), finches (Fringillidae),
songbirds, e.g., sparrows (Emberizidae), blackbirds (Icter-
idae), finches (Fringillidae), will still consume invertebrates

Fig. 3 Model prediction showing back natural-log transformed breast
feather THg concentrations (µg/g dw) with partial residuals and con-
fidence bands of adult red-tailed hawk samples collected over the
autumn migration season (August–January) in the Marin Headlands of
California (Pacific Flyway). Each individual’s sampling date was
converted to Julian date and represent migration passage date through
the study site

Fig. 4 Least squares mean ± standard error µg/g dw of back-
transformed breast feather THg concentrations of juvenile merlin
from 4 North American flyways. THg concentrations are averaged
over sex and were estimated from a linear mixed-effects model with
flyway and sex as fixed effects, and site as a random effect. Flyways
that do not share a lower-case letter are significantly different (p <
0.05) from each other with a 95% Tukey pair-wise comparison
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part of the year, especially during the breeding season and
as nestlings (Judd 1901; De Graaf et al. 1985). This path-
way of contaminant exposure has also been described in the
post-DDT era, where raptors consuming higher proportions
of insectivorous birds had higher DDT exposure than their
counterparts that consume less insectivorous prey (Keith
and Gruchy 1972).

Western red-shouldered hawks (B. l. elegans; Hull et al.
2008a, 2008b; Dykstra et al. 2008), are not bird specialists
and exhibited feather THg concentrations similar to some
bird specialists in our study. Red-shouldered hawks in the
west, e.g., Oregon and California, are highly associated with
riparian habitats (Bloom et al. 1993; Rottenborn 2000;
Dykstra et al. 2008) and their diet may include more
amphibians, reptiles, and birds, compared to other Buteos
we sampled (e.g., red-tailed hawks and broad-winged
hawks) which consume predominantly small mammals. In
North Carolina, liver samples collected from red-shouldered
hawks also exhibited relatively high Hg concentrations
compared to other birds of prey (Weir et al. 2018). It is
unclear to what extent Hg exposure is affecting red-
shouldered hawk populations in different regions. Further
investigation is needed to assess the risks and pathways of
MeHg exposure in red-shouldered hawks across their range
to understand how habitat and diet are influencing the
reported elevated Hg levels.

Across 13 years (2002–2014), we found no trend in
feather THg concentrations for adult sharp-shinned hawks.
In studies spanning similar time periods in Europe, no

temporal trends were found for northern goshawk Accipiter
gentilis, common buzzard Buteo buteo, and tawny owl Strix
aluco (Bustnes et al. 2013; Varela et al. 2016; García-
Seoane et al. 2017). We found differing trends among
juvenile northern harriers and adult red-tailed hawks, where
THg concentrations increased and decreased, respectively.
Even though both species had significant p-values related to
sampling year, and mean THg concentrations doubled in
juvenile northern harriers and halved in adult red-tailed
hawks, there was little difference between years; therefore,
these temporal trends should be interpreted with caution.
Further research is required to assess whether results would
be consistent with larger sample sizes and across a longer
sampling period than 13-years. While a 13-year time frame
may not be of sufficient length to detect long-term changes
in environmental Hg exposure, the sampling period of this
data set is an advancement in Hg monitoring efforts for
North American raptors and provides a baseline for future
comparisons as breast feather samples continue to be col-
lected across North America.

We found increasing Hg exposure levels for adult red-
tailed hawks in relation to passage date in the Marin
Headlands, California, meaning that birds migrating
through the migration site later in the season had higher
levels of Hg exposure at time of feather growth compared to
earlier migrants. Since we did not find a similar trend in the
other species analyzed, this may be attributed to the dif-
ferential migration timing between two genetically and
geographically distinct populations of red-tailed hawks

Table 4 Model estimates for
total mercury (THg)
concentrations (µg/g dw) in
juvenile merlin breast feathers
collected from four North
American Flyways in 2009

(A) Full model: averaged over
sex

(B) Juvenile female (C) Juvenile male

µg/g dw THg µg/g dw THg µg/g dw THg

Flyway n LS Mean ± SE 95% CI n Mean ± SE 95% CI n Mean ± SE 95% CI

Pacific 49 1.15 ± 0.11 0.93–1.37 17 1.36 ± 0.19 0.97–1.75 32 1.00 ± 0.12 0.76–1.25

Intermountain 23 1.14 ± 0.16 0.84–1.45 11 1.40 ± 0.25 0.91–1.90 12 0.94 ± 0.19 0.56–1.31

Mississippi 56 2.14 ± 0.19 1.77–2.51 26 2.38 ± 0.28 1.83–2.93 30 1.92 ± 0.24 1.43–2.40

Atlantic 38 1.75 ± 0.19 1.38–2.13 30 1.70 ± 0.18 1.33–2.06 8 2.47 ± 0.61 1.25–3.68

(A) The full model represents least squares mean ± standard error (LS Mean ± SE), and 95% confidence
interval (CI) calculated using a linear mixed-effects model with sample site as a random effect. Juvenile
female (B) and juvenile male (C) data represent sample sizes (n) and geometric mean ± standard error (Mean
± SE) and 95% CI µg/g dw of feather THg

Table 5 Total mercury (THg)
concentrations (µg/g dw) in
adult merlin breast feathers
collected in the Intermountain
Flyway and Mississippi Flyway
in 2009

(A) Adult female (B) Adult male

µg/g dw THg µg/g dw THg

Flyway n Mean ± SE 95% CI n Mean ± SE 95% CI

Intermountain 3 2.29 ± 0.60 0.76–3.82 4 3.87 ± 0.87 1.63–6.12

Mississippi 4 7.98 ± 1.78 3.41–12.56 3 8.23 ± 2.12 2.78–13.68

This data is organized by sex ((A) female or (B) male) and represents sample size (n), and geometric mean ±
standard error (Mean ± SE) and 95% confidence interval (CI) µg/g dw of feather THg
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known to migrate through the Pacific Flyway sampling site
in the Marin Headlands along the California coastline, with
later migrants comprised of a higher proportion from an
Intermountain origin (Hull et al. 2009). These results could
indicate differing Hg exposure among red-tailed hawk
populations in western North America, rather than an actual
effect of sampling date because breast feathers were likely
grown several months prior to sampling in the breeding
season. Further, but further targeted studies would be nee-
ded to confirm more precise population differences in Hg
exposure.

For merlins sampled in four North American flyways,
juveniles from the Mississippi Flyway averaged greater
THg concentrations compared to juvenile merlins from the
Pacific and Intermountain flyways. Juvenile merlins from
the Atlantic Flyway also averaged greater THg concentra-
tions compared to juveniles from the Pacific and Inter-
mountain flyways; however, the Atlantic Flyway was only
statistically greater than the Pacific Flyway. In North
America, a similar east to west geographic trend was
observed in both adult and juvenile common loons Gavia
immer (Evers et al. 1998). Merlins breed across the boreal
forest and Pacific Northwest, so juvenile feather THg con-
centrations may provide an index of Hg exposure for this
broad geographic region. Our analysis consisted of one
sampling site within the Pacific, Mississippi, and Atlantic
flyways. However, considering that feather THg con-
centrations represent Hg exposure on the breeding grounds
and distinct migratory paths vary among raptor populations
(Goodrich and Smith 2008) and are associated with mor-
phological and genetic differences in multiple raptor species
(Hull and Girman 2005; Hull et al. 2008a, 2008b; Pitzer
et al. 2008; Preston and Beane 2009), our results may
indicate differential exposure among merlins breeding in
distinct regions across their breeding range.

Generally, Hg concentrations in birds are higher in males
than in females (Ackerman et al. 2007, 2008; Robinson
et al. 2011); however, we found no significant difference in
feather THg concentrations between sexes for raptor spe-
cies. Raptors exhibit varying degrees of reverse sexual size
dimorphism, where females are larger than males. For
example, the difference in size between sharp-shinned hawk
females and males is greater than it is for red-tailed hawks
(Snyder and Wiley 1976; Bildstein 1992). In juveniles, we
may expect females to deposit lower Hg concentrations in
growing feathers compared to males due to dilution effect,
however, we did not find a statistical difference among
juveniles in our study. Furthermore, feather Hg concentra-
tions in adult females may appear lower than actual expo-
sure if feather molt occurred after egg laying as Hg can be
excreted through egg production (Lewis and Furness 1993;
Ackerman et al. 2016b). Similarly, studies investigating Hg
concentrations in internal tissues for other raptor species

also did not find a significant difference among sexes, for
example laggar falcons Falco jugger, northern goshawk,
common buzzard, and tawny owl (Movalli 2000; Castro
et al. 2011). It is possible that uneven and low sample size
among sexes within a species may have contributed to this
result in our study; however, due to the variation in sexual
size dimorphism among species, investigating the interac-
tion between age and sex may help us understand how
sexual size dimorphism may contribute to differential Hg
exposure between species. Ultimately, further research is
needed to understand the differences between female and
male Hg deposition in breast feathers and how it relates to
potential resource partitioning and physiology.

Lastly, age was a significant predictor of feather THg
concentrations in our study, with adults averaging greater
feather THg concentrations than juveniles. This result was
expected because Hg deposited in juvenile breast feathers
represent exposure from prey provisioned while in the nest
as feather tracts are growing and juveniles are rapidly
increasing in size and diluting their Hg concentrations
(Ackerman et al. 2011), whereas Hg deposited in adult
breast feathers represent exposure at the time of body
feather molt (Garcia-Seoane et al. 2017; Barnes and Ger-
stenberger 2015; Evers et al. 2005). Due to the differences
in Hg feather deposition between juveniles and adult rap-
tors, when using THg concentrations in breast feathers as an
index of Hg exposure among raptor species, comparisons
may be more accurate if analyzed within a single age class.

Conclusion

At the large geographic scale of North American flyways,
interspecific and geographic trends were detected among
terrestrial feeding raptor species. Feather THg concentra-
tions varied among raptor species and age groups; however,
Hg exposure may be influenced by region and was gen-
erally higher in species that specialize in feeding on birds,
with the exception of red-shouldered hawks which had
relatively similar feather THg concentrations to bird
specialists.

Additionally, analyzing samples from cosmopolitan
raptor species, such as merlins, may be informative for
identifying broad-scale geographic trends in Hg exposure,
and analyzing terrestrial feeding raptors that consume a high
proportion of insectivorous songbirds, such as sharp-
shinned hawks, may be informative for monitoring MeHg
biomagnification in terrestrial food webs. Within migration
corridors where distinct populations may vary temporally as
migrants move through a monitoring site, e.g. red-tailed
hawk, changes in feather THg concentrations across pas-
sage dates may indicate differential Hg exposure among
populations from distinct regions.
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Lastly, utilizing archived feather samples collected by
raptor migration monitoring stations across the continent
allowed us to look at Hg exposure for many species
representative of different feeding guilds across space and
time in a minimally invasive way. Therefore, breast feathers
collected by networks of migration monitoring stations may
have a role in biomonitoring contaminants in North
America and around the world.
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